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Abstract

The state and output equations for networks containing commensurate and non-commensurate delay lines have

been derived using topological methods. Computer programs for the analysis and design of these networks have

been developed and some of the results are reported. The method is completely general and can be applied to any

network topology without any restrictions. Non-commensurate networks offer the possibility of doubling the

number of restrictions that can be imposed on the network response. Networks with coupling between the transmis-

sion lines can also be solved.

Introduction

A general network containing transmission lines,

resistors and voltage and current sources is shown in
Figure 1. The sections S1 . ..Ss contain the resistor

elements and the sources and they are interconnected
by the transmission lines. If the delay on each line

is the same, the network is commensurate but in general
each line will have a different delay. Coupling bet-

ween all the lines could exist and a common earth plane

could exist for some of the lines together with

balanced lines in the same network. Two types of

degenerate lines exist, these are degenerate voltage

(current) lines which are terminated in an ideal
voltage (current) source and degenerate short (open)

circuited lines which are terminated in a short (open)

circuit.

Theoretical Analysis

The state equation of networks containing commen-

surate delay lines has been derived using topological
1

methods . The equation is of the form

b(t+T) = Ah(t) +Bl uR(t) + B2 uT(t) (1)

where the state vector b(t) is the reflected para-

meters at all the transmission line ports, uR(t) and

u~(t) are vectors related to the input voltage and

current sources, A is the state matrix and B1 and B2

are matrices relating the inputs to the state vector.
The order of the state vector b(t) is twice the number
n of all the transmission lines.

When the z-transform is applied to (l), the state

equation in the z–domain is obtained

b(z) ❑ [Z U2n-A]-1 [Bl UR(Z) + B2 UT(Z)] (2)

ST (u+ju)T , ~+j~,where z = e ❑ e

T is the commensurate delay of the transmission lines

and

has

can

u ~n is a unit matrix of order 2n.

Similarly, the output equation of the form

y(t) ❑ C b(t) + Dl uR(t) + D2 uT(t) (3)

been obtained for all possible output vectors y(t).

When the z-transform is applied to (3) the result

be solved with (2) to obtain the transfer function

y(z) ❑ [C[z U2n-A] ‘1 B1 + D1][uR( z)]

+ [C[z U2n-A] ‘1 B2 + D2][uT( z)] (4)

The topological forms of the matrices A, Bl, C,

Dl and D2 are valid for commensurate and non-commensu-

rate networks. In the non-commensurate case the delays

on the lines could be all difference and the time
advanced state vector in (1) should be replaced by

[bl(t +alT) b2(t +a2T)...b2n(t +u2nT)]Twherea1...

a2n are the ratios between the delays on each line and

the normalised or ~fstandard” delay T. The normalisa-

tion could also be made with respect to any one of the

lines in the network.

To obtain the transfer function for non-commensu-

rate networks the matrix [z UO--A] in (4) is replaced
al ‘L32

by [diag(z , z . ..z
a2n)jA, ‘“

When deriving the state and output equations it is
necessary to obtain the scattering matrix of the whole

transmission line system normalised to the characteris-
tic resistance mat~ix Ro. When coupling between the

lines does not exist, the matrix R. is a diagonal

matrix of all the self-characteristic resistances of

the lines. When coupling exists the off-diagonal

elements of R. are no longer zero. This is the only

modification required to include coupling between the

lines . In the most general case, coupling would exist

between all the transmission lines and all the elements

of R. are non–zero.

Properties of Transmission Line Networks

Given any commensurate network, each line could be
divided into an integral number of equal lines and a
new commensurate delay is obtained. For example, if

each line is divided into three equal lines the state
equation can still be written with respect to the new

commensurate delay which is one third of the original
delay. The fundamental delay TF is defined as the

longest delay for which a state equation exists. The

order n of the network is the rank of the state matrix
A when the state equation is written with respect to

the fundamental delay. The deg~ee of freedom is

defined as the number of restrictions that can be
imposed on the network response, given the freedom of
adjusting the unknown element values.

In a non-commensurate network, it is always

possible to choose the delay T such that the ratio
between the highest and the lowest a is not greater

than 2. In this case, the network can be considered

as a perturbation of a prototype commensurate network
obtained by setting all the a ratios to 1, The order

of the non-commensurate network will be defined as the
order of the prototype network and all the delays are

written in terms of the commensurate delay. Since the
number of unknowns are now the line lengths as well as
their characteristic resistances then d = 2n.
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In normal networks the output y(t) vector

lated to the input vector u(t) by
.

y(t) ❑ Z an u(t-2nT)
n=o

The fundamental delay TF in this case is 2T.

is re-

Table I gives a comparison between various types
of networks, in each case the total number of trans-
mission lines is n,

n d

Normal commensurate n n
Networks designed by Kuroda identities with r

cascaded and s shunt lines s s
Non-normal commensurate 2n n
Normal non-commensurate n 2n
Non-normal non-commensurate 2n 2n

Table I : The order and the degree of freedom of

various types of networks containing n transmission
lines.

From Table I it is seen that the order of the

response and the degree of freedom are not always the
same. Furthermore, in the case of non-commensurate
networks, the degree of freedom is twice that of a
commensurate network with the same topology.

The Input Data

To formulate the data required by the computer

programs an unconnected graph consisting of all the
transmission line and resistive edges is drawn for all

the sections. A tree is chosen for each section such

that it contains the minimum number of transmission

line edges, all the degenerate open circuited and
current transmission line edges, and none of the
degenerate short circuited and voltage transmission
line edges. All the unconnected graphs are treated as
one graph with a forest consisting of all the trees
and a coforest consisting of all the cotrees. In num-

bering the edges of the graph we start by the trans-
mission line edges in the forest followed by the

resistive edges in the forest, the transmission line
edges in the coforest and the resistive edges in the

coforest. The required input data islisted below

a.

b.

c.

d.

e.

The numbers L and m of the transmission line edges

in the forest and coforest respectively, and the

numbers a and b of the resistive edges in the
forest and coforest respectively.

The dynamical transformations D. This is the

matrix describing the interconnections between the
elements. The rows of D are assigned to the

branches (edges in the forest) and the columns are
assigned to the chords (edges in the coforest).
Each column in D is a tie-set consisting of the

assigned chord and as many branches as necessary.

The row operations matrix K. This matrix re-

arranges the rows of the state vector such that the
two rows belonging to the same transmission line
are interchanged. The matrix K is obtained by

assigning its columns to the transmission line
edges in the order they appear in the state vector
and its rows to the same edges with the two edges
belonging to the same line interchanged. An entry

of 1 is made at the intersection of the column and
row assigned to the same edge and an entry of O is

made otherwise.

The resistive elements matrix R. This is a dia-

gonal matrix of all the values of the resistive

elements in the order assigned to their edges.

The characteristic resistaneo rmtrix Ro. This is a

matrix of the self and mutual characteristic resis-

tances of the system of transmission lines. In the

f.

!4.

h.

i.

synthesis program the elements of R. are the initial

guesses for the error minimisation procedure.

The delay ratio vector ct. This is a vector of the

ratios of the delays on the lines to a standard

delay. In the synthesis program the value of these

ratios are the initial guesses for the error minimi-

sation procedure.

The input vectors. These are current and voltage
vectors of the sources in each edge.

The Ou-fput directive. This directive indicates

which output is-required.

The ~equired output restrictions. For the synthesis

program the required restrictions on the network

output are part of the input data. The maximum

number of such restrictions is equal to the degree
of freedom, d.

The Analysis and Synthesis Programs

The analysis program uses the input data to con-

struct the state and output equations and calculate the

amplitude and phase of the transfer function as a
function of u, The program also calculates the natural

frequencies and the zeros of transmission in the z, s
and A(A ❑ tanh sT) domains.

The synthesis program calculates the required

values of the characteristic resistances and the delay

ratios to satisfy the constraints on the transfer
function. In the case of commensurate networks, the

most convenient method of specifying the constraints on
the transfer function is to specify the locations of

the natural frequencies, In some cases, especially for

nOn-commensurate networks, this may not be possible and
the restrictions are applied directly on either the

amplitude or phase of the transfer function.

Examples

Some examples are given below. The results of the

synthesis program correspond to the norm of the error
-8

vector being less than 10 .

Exum@ le I: This is a synthesis problem for the fifth

order commensurate network shown in Figure 2, A non-

redundant equiripple response is required with 0.5 dB

ripple and a cut-off angle UT of 1. First the required

values of the natural frequencies in the z-plane were
obtained given that the network has three transmission
zeros at tj and -j and two transmission zeros at O and
at ~. The characteristic resistances of the lines were

calculated and they are given in Figure 2 together with

the network response.

Example II: In this example a non-commensurate third

order network was designed to meet the following six
conditions: (a) A zero of transmission at UT = 1.5 (b)
A zero of transmission at UT = 1.6 (c) A minimum inser-

tion loss of 50 dB in the range of UT = 1.5 and 1.6 (d)

8 (e) Both maxima in the pass-band should be 0.5 dB (2
conditions) (f) The lower cut-off angle UT is 2.2,

The results are shown in Figure 3 and the speci-

fied restrictions are marked on the response curve.

Ezamp2e 111.’ This example is based on the sixth order

2
inter-digital filter given by Wenzel . The effect of

coupling between non-adjacent elements was studied.
Coupling between elements 2-4, and 3-5 was taken as 5%

of the coupling between adjacent elements, These
values were added to Wenzel!s network and the results
are shown in Figure 4. It is clear that a small amount
of coupling between non-adjacent elements has a con-

siderable effect on the network response.

135



Conclusions

A powerful and accurate method for the analysis
and synthesis. of transmission line net~orks has been

developed. The method can be applied to commensurate,

non-commensurate and coupled networks with no restric-

tions on the topology. The method can be used in—-
either the time or frequency domains and can
ded to solve networks containing both lumped
distributed elements.
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Fig. l-General transmission line network.
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Fig. 2-Non-redundant fifth order filter (Example I).
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Fig. 4-Effect of coupling between non-adjacent elements

(Example IID.
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Fig. 3-The realisation of six restrictions on the response of a third order

non-commensurate network (Example II).
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