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Abstract

The state and output equations for networks containing commensurate and non-commensurate delay lines have

been derived using topological methods.
been developed and some of the results are reported.
network topology without any restrictions.

sion lines can also be solved.
Introduction

A general network containing transmission lines,
resistors and voltage and current sources 1s shown in

Figure 1. The sections Sl"'Ss contain the resistor

elements and the sources and they are interconnected
by the transmission lines. If the delay on each line
is the same, the network is commensurate but in general
each line will have a different delay. Coupling bet-
ween all the lines could exist and a common earth plane
could exist for some of the lines together with
balanced lines in the same network. Two types of
degenerate lines exist, these are degenerate voltage
(current) lines which are terminated in an ideal
voltage (current) source and degenerate short (open)
circuited lines which are terminated in a short (open)
circuit.

Theoretical Analysis

The state equation of networks containing commen-
surate delay lines has been derived using topological

methodsl. The equation is of the form

b(t+T) = A b(t) +B (t) +B uT(t) (1)

1R 2
where the state vector b(t) is the reflected para-

meters at all the transmission line ports, uR(t) and
uT(t) are vectors related to the input voltage and

1 and B2
are matrices relating the inputs to the state vector.
The order of the state vector b(t) is twice the number

n of all the transmission lines.

current sources, A i1s the state matrix and B

When the z-transform is applied to (1), the state
equation in the z-domain is obtained

b(z) = [z U2n—A]_l [B, uz(2) + B, uy(z)] (2)

sT _ e(0+jw)T

where z = ¢ = L+38,

T is the commensurate delay of the transmission lines
and U2n is a unit matrix of order 2n.
Similarly, the output equation of the form

y{t) = C b(t) + D, uR(t) + D, uT(t) (3)

has been obtained for all possible output vectors y(t).

When the z-transform is applied to (3) the result
can be solved with (2) to obtain the transfer function

y(z) = [cfz U2n—A:| -t B, + Dl] [uR(z)]
+ [elz vy -a] ™" B, + D] [ug(2)] ()

The topological forms of the matrices A, B c,

1°?
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Computer programs for the analysis and design of these networks have
The method is completely general and can be applied to any
Non-commensurate networks offer the possibility of doubling the
number of restrictions that can be imposed on the network response.

Networks with coupling between the transmis-—

Dl and D2 are valid for commensurate and non-commensu-

rate networks. In the non-commensurate case the delays
on the lines could be all difference and the time
advanced state vector in (1) should be replaced by

T
[byCt +oyT) byt + a,T) by (& + a, T)]" where a, ...

0, are the ratios between the delays on each line and

2n
the normalised or "standard" delay T. The normalisa-
tion could also be made with respect to any one of the
lines in the network.

To obtain the transfer function for non-commensu-
rate networks the matrix [z U n—A} in (4) is replaced

2
by [diag(zal, zaz...ZQQn)—A]

When deriving the state and output equations it is
necessary to obtain the scattering matrix of the whole
transmission line system normalised to the characteris-
tic resistance matrix RO. When coupling between the

lines does not exist, the matrix R, is a diagonal

matrix of all the self-characteristic resistances of
the lines. When coupling exists the off-diagonal
elements of Ro are no longer zero. This is the only

modification required to include coupling between the
lines. In the most general case, coupling would exist
between all the transmission lines and all the elements
of RO are non-zero.

Properties of Transmission Line Networks

Given any commensurate network, each line could be
divided into an integral number of equal lines and a
new commensurate delay is obtained. For example, if
each line is divided into three equal lines the state
equation can still be written with respect to the new
commensurate delay which is one third of the original
delay. The fundamental delay TF is defined as the

longest delay for which a state equation exists. The
order n of the network is the rank of the state matrix
A when the state equation is written with respect to
the fundamental delay. The degree of freedom is
defined as the number of restrictions that can be
imposed on the network response, given the freedom of
adjusting the unknown element values.

In a non-commensurate network, it is always
possible to choose the delay T such that the ratio
between the highest and the lowest o is not greater
than 2. In this case, the network can be considered
as a perturbation of a prototype commensurate network
obtained by setting all the o ratios to 1. The order
of the non-commensurate network will be defined as the
order of the prototype network and all the delays are
written in terms of the commensurate delay. Since the
number of unknowns are now the line lengths as well as
their characteristic resistances then d = 2n.



In normal networks the output y(t) vector is re-
lated to the input vector u(t) by
o
y(t) = Z a
n=0 O

u(t-2nT)

The fundamental delay TF in this case is 2T.

Table I gives a comparison between various types
of networks, in each case the total number of trans-
mission lines is n.

n d
Normal commensurate n n
Networks designed by Kuroda identities with r
cascaded and s shunt lines s s
Non-normal commensurate 2n n
Normal non-commensurate n 2n
Non-normal non-commensurate 2n 2n
Table I The order and the degree of freedom of

various types of networks containing n transmission
lines.

From Table I it is seen that the order of the
response and the degree of freedom are not always the
same. Furthermore, in the case of non-commensurate
networks, the degree of freedom is twice that of a
commensurate network with the same topology.

The Input Data

To formulate the data required by the computer
programs an unconnected graph consisting of all the
transmission line and resistive edges is drawn for all
the sections. A tree is chosen for each section such
that it contains the minimum number of transmission
line edges, all the degenerate open circuited and
current transmission line edges, and none of the
degenerate short circuited and voltage transmission
line edges. All the unconnected graphs are treated as
one graph with a forest consisting of all the trees
and a coforest consisting of all the cotrees. In num-
bering the edges of the graph we start by the trans-
mission line edges in the forest followed by the
resistive edges in the forest, the transmission line
edges in the coforest and the resistive edges in the
coforest. The required input data is:listed below

a. The numbers I and m of the transmission line edges
in the forest and coforest respectively, and the
numbers @ and b of the resistive edges in the
forest and coforest respectively.

b. The dynamical transformations D. This is the
matrix describing the interconnections between the
elements. The rows of D are assigned to the
branches (edges in the forest) and the columns are
assigned to the chords (edges in the coforest).
Each column in D is a tie-set consisting of the
assigned chord and as many branches as necessary.

c. The row operations matrix K. This matrix re-
arranges the rows of the state vector such that the
two rows belonging to the same transmission line
are interchanged. The matrix K is obtained by
assigning its columns to the transmission line
edges in the order they appear in the state vector
and its rows to the same edges with the two edges
belonging to the same line interchanged. An entry
of 1 is made at the intersection of the column and
row assigned to the same edge and an entry of 0 is
made otherwise.

d. The resistive elements matrix R. This is a dia-
gonal matrix of all the values of the resistive

elements in the order assigned to their edges.
e. The characteristic resistance matrix RO. This is a

matrix of the self and mutual characteristic resis-
tances of the system of transmission lines. In the

synthesis program the elements of RO are the initial
guesses for the error minimisation procedure.

f. The delay ratio vector o. This is a vector of the
ratios of the delays on the lines to a standard
delay. In the synthesis program the value of these
ratios are the initial guesses for the error minimi-
sation procedure.

g. The input vectors. These are current and voltage
vectors of the sources in each edge.

h. The output directive. This directive indicates
which output is required.

i. The required output restrictions. For the synthesis
program the required restrictions on the network
output are part of the input data. The maximum
number of such restrictions is equal to the degree
of freedom, 4.

The Analysis and Synthesis Programs

The analysis program uses the input data to con-
struct the state and output equations and calculate the
amplitude and phase of the transfer function as a
function of w. The program also calculates the natural
frequencies and the zeros of transmission in the z, s
and A(X = tanh sT) domains.

The synthesis program calculates the required
values of the characteristic resistances and the delay
ratios to satisfy the constraints on the transfer
function. In the case of commensurate networks, the
most convenlent method of specifying the constraints on
the transfer function is to specify the locations of
the natural frequencies. In some cases, especially for
non-commensurate networks, this may not be possible and
the restrictions are applied directly on either the
amplitude or phase of the transfer function.

Examples

Some examples are given below. The results of the
synthesis program correspond to the norm of the error

vector being less than lO_8

Example I: This is a synthesis problem for the fifth
order commensurate network shown in Figure 2. A non-
redundant equiripple response is required with 0.5 dB
ripple and a cut-off angle wT of 1. First the required
values of the natural frequencies in the z-plane were
obtained given that the network has three transmission
zeros at +j and -j and two transmission zeros at O and
at . The characteristic resistances of the lines were
calculated and they are given in Figure 2 together with
the network response.

Exa@gle II: In this example a non-commensurate third
order network was designed to meet the following six
conditions: (a) A zero of transmission at wT = 1.5 (b)
A zero of transmission at wT = 1.6 (c) A minimum inser-
tion loss of 50 dB in the range of wT = 1.5 and 1.6 (4d)
% (e) Both maxima in the pass-band should be 0.5 dB (2
conditions) (f) The lower cut-off angle wl is 2.2.

The results are shown in Figure 3 and the speci~
fied restrictions are marked on the response curve.

Example III: This example is based on the sixth order

inter-digital filter given by Wenzel2. The effect of
coupling between non-adjacent elements was studied.
Coupling between elements 2-4, and 3-5 was taken as 5%
of the coupling between adjacent elements. These
values were added to Wenzel's network and the results
are shown in Figure 4. It is clear that a small amount
of coupling between non-adjacent elements has a con-
siderable effect on the network response.



Conclusions

A powerful and accurate method for the analysis
and synthesis of transmission line networks has been
developed. The method can be applied to commensurate,
non-commensurate and coupled networks with no restric-
tions on the topology. The method can be used in
either the time or frequency domains and can be exten-
ded to solve networks containing both lumped and
distributed elements.
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Fig. 2-Non-redundant fifth order filter (Example I).
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Fig. 4~Effect of coupling between non-adjacent elements
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Fig. 3-The realisation of six restrictions on the response of a third order
non-commensurate network (Example II).
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